180 research outputs found

    El nexo entre el océano y el clima

    Get PDF

    Status of regional climate and ecosystems observing Report

    Get PDF
    Report on the current observing status in the North Atlantic subpolar gyre and the South Atlantic subtropical gyre, containing the results of the investigation on regional observing activities, systems, and connectivity in relation to climate and ecosystem

    Cold vs. warm water route – sources for the upper limb of the Atlantic Meridional Overturning Circulation revisited in a high-resolution ocean model

    Get PDF
    The northward flow of the upper limb of the Atlantic Meridional Overturning Circulation (AMOC) is fed by waters entering the South Atlantic from the Indian Ocean mainly via the Agulhas Current (AC) system and by waters entering from the Pacific through Drake Passage (DP), commonly referred to as the “warm” and “cold” water routes, respectively. However, there is no final consensus on the relative importance of these two routes for the upper limb's volume transport and thermohaline properties. In this study we revisited the AC and DP contributions by performing Lagrangian analyses between the two source regions and the North Brazil Current (NBC) at 6∘ S in a realistically forced high-resolution (1∕20∘) ocean model. Our results agree with the prevailing conception that the AC contribution is the major source for the upper limb transport of the AMOC in the tropical South Atlantic. However, they also suggest a non-negligible DP contribution of around 40 %, which is substantially higher than estimates from previous Lagrangian studies with coarser-resolution models but now better matches estimates from Lagrangian observations. Moreover, idealized analyses of decadal changes in the DP and AC contributions indicate that the ongoing increase in Agulhas leakage indeed may have induced an increase in the AC contribution to the upper limb of the AMOC in the tropics, while the DP contribution decreased. In terms of thermohaline properties, our study highlights the fact that the AC and DP contributions cannot be unambiguously distinguished by their temperature, as the commonly adopted terminology may imply, but rather by their salinity when entering the South Atlantic. During their transit towards the NBC the bulk of DP waters experiences a net density loss through a net warming, whereas the bulk of AC waters experiences a slight net density gain through a net increase in salinity. Notably, these density changes are nearly completely captured by Lagrangian particle trajectories that reach the surface mixed layer at least once during their transit, which amount to 66 % and 49 % for DP and AC waters, respectively. This implies that more than half of the water masses supplying the upper limb of the AMOC are actually formed within the South Atlantic and do not get their characteristic properties in the Pacific and Indian Oceans

    Indices associated with climate variability

    Get PDF
    Evaluation of the most critical observations and analysis of AMOC related changes in heat-, freshwater- and carbon budgets and subsurface temperature in the subpolar North Atlantic and the subtropical South Atlanti

    The importance of monitoring the Greater Agulhas Current and its inter-ocean exchanges using large mooring arrays

    Get PDF
    The 2013 Intergovernmental Panel on Climate Change report, using CMIP5 and EMIC model outputs suggests that the Atlantic Meridional Overturning Circulation (MOC) is very likely to weaken by 11–34% over the next century, with consequences for global rainfall and temperature patterns. However, these coupled, global climate models cannot resolve important oceanic features such as the Agulhas Current and its leakage around South Africa, which a number of studies have suggested may act to balance MOC weakening in the future. To properly understand oceanic changes and feedbacks on anthropogenic climate change we need to substantially improve global ocean observations, particularly within boundary current regions such as the Agulhas Current, which represent the fastest warming regions across the world’s oceans. The South African science community, in collaboration with governing bodies and international partners, has recently established one of the world’s most comprehensive observational networks of a western boundary current system, measuring the Greater Agulhas Current System and its inter-ocean exchanges south of Africa. This observational network, through its design for long-term monitoring, collaborative coordination of resources and skills sharing, represents a model for the international community. We highlight progress of the new Agulhas System Climate Array, as well as the South African Meridional Overturning Circulation programme, which includes the Crossroads and GoodHope hydrographic transects, and the South Atlantic MOC Basin-wide Array. We also highlight some of the ongoing challenges that the programmes still face

    Design of the Observing System Simulation Experiments with multi-platform in situ data and impact on fine- scale structures

    Get PDF
    This report presents the work plan of the Task 2.3: Observing System Simulation Experiments: impact of multi-platform observations for the validation of satellite observation

    Highly variable upper and abyssal overturning cells in the South Atlantic

    Get PDF
    The Meridional Overturning Circulation (MOC) is a primary mechanism driving oceanic heat redistribution on Earth, thereby affecting Earth’s climate and weather. However, the full-depth structure and variability of the MOC are still poorly understood, particularly in the South Atlantic. This study presents unique multiyear records of the oceanic volume transport of both the upper (~3100 meters) overturning cells based on daily moored measurements in the South Atlantic at 34.5°S. The vertical structure of the time-mean flows is consistent with the limited historical observations. Both the upper and abyssal cells exhibit a high degree of variability relative to the temporal means at time scales, ranging from a few days to a few weeks. Observed variations in the abyssal flow appear to be largely independent of the flow in the overlying upper cell. No meaningful trends are detected in either cell.Fil: Kersalé, Marion. National Ocean And Atmospheric Administration; Estados Unidos. University of Miami; Estados UnidosFil: Meinen, Christopher S.. National Ocean And Atmospheric Administration; Estados UnidosFil: Perez, Renellys C.. National Ocean And Atmospheric Administration; Estados UnidosFil: Le Hénaff, Matthieu. National Ocean And Atmospheric Administration; Estados Unidos. University of Miami; Estados UnidosFil: Valla, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento Oceanografía; ArgentinaFil: Lamont, Tarron. University of Cape Town; SudáfricaFil: Sato, Olga T.. Universidade de Sao Paulo; BrasilFil: Dong, Shenfu. National Ocean And Atmospheric Administration; Estados UnidosFil: Terre, T.. University of Brest; Francia. Centre National de la Recherche Scientifique; FranciaFil: van Caspel, M.. Universidade de Sao Paulo; BrasilFil: Chidichimo, María Paz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento Oceanografía; ArgentinaFil: van den Berg, Marcel Alexander. Department of Environmental Affairs; SudáfricaFil: Speich, Sabrina. University Of Cape Town; SudáfricaFil: Piola, Alberto Ricardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Ecole Normale Superieure. Laboratoire de Meteorologie Dynamique; Francia. Ministerio de Defensa. Armada Argentina. Servicio de Hidrografía Naval. Departamento Oceanografía; Argentina. Instituto Franco-Argentino sobre Estudios del Clima y sus Impactos; Argentina. Universidad de Buenos Aires; ArgentinaFil: Campos, Edmo. Universidade de Sao Paulo; Brasil. American University Of Sharjah.; Emiratos Árabes UnidosFil: Ansorge, Isabelle. University of Cape Town; SudáfricaFil: Volkov, Denis L.. University of Miami; Estados Unidos. National Ocean And Atmospheric Administration; Estados UnidosFil: Lumpkin, Rick. National Ocean And Atmospheric Administration; Estados UnidosFil: Garzoli, S. L.. University of Miami; Estados Unidos. National Ocean And Atmospheric Administration; Estados Unido
    corecore